Answer:


Explanation:
Fundamental Theorem of Calculus
If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration:

The area between a curve and the x-axis can be found using definite integration. The definite integral of f(x) with respect to x between the limits x = a and x = b:
![\displaystyle \int^b_a \text{f}(x)\; \text{d}x=\left[\text{g}(x)\right]^b_a=\text{g}(b)-\text{g}(a)](https://img.qammunity.org/2024/formulas/mathematics/high-school/qtir4qqbrnk0enfce5ly31yz4dpzut9mv2.png)
where a is the lower limit and b is the upper limit.

Question 1
Given function:

From inspection of the given graph:
- Lower limit a = -1
- Upper limit b = 2
Therefore:
![\begin{aligned}\displaystyle\int^2_(-1)\left((1)/(4)x^3+(1)/(6)x+1\right)\;\text{d}x&=\left[(1)/(4\cdot4)x^(3+1)+(1)/(6\cdot 2)x^(1+1)+x\right]^2_(-1)\\\\&=\left[(1)/(16)x^4+(1)/(12)x^2+x\right]^2_(-1)\\\\&=\left((1)/(16)(2)^(4)+(1)/(12)(2)^2+(2) \right)-\left((1)/(16)(-1)^4+(1)/(12)(-1)^2+(-1)\right)\\\\&=\left(1+(1)/(3)+2\right)-\left((1)/(16)+(1)/(12)-1\right)\\\\&=(10)/(3)+(41)/(48)\\\\&=(67)/(16)\\\\&=4.1875\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/high-school/nvgd8k8v2xi0lt639x8l5d48eb5ieuzzkw.png)
Question 2
