62.9k views
3 votes
Re-write the quadratic function below in Standard Form
y=-2(x-3)(x+4)

User Harvey
by
7.0k points

1 Answer

5 votes

Answer:


\boxed{-2x^2 -2x +24\\}\\\\

Explanation:

The standard form of a quadratic function is:


y = ax^2 + bx + c\\

where a, b and c are constants


\textrm{The given expression is $y=-2\left(x-3\right)\left(x+4\right)$}

Expand the right side of this expression

-2\left(x-3\right)\left(x+4\right)

First expand (x-3)(x+4) using the FOIL method:


(x-3)(x+4)


=x\cdot x+x\cdot \:4-3x-3\cdot \:4\\\\= x^2+x-12


-2\left(x-3\right)\left(x+4\right)\\\\= -2(x^2+x-12)\\\\= \boxed{-2x^2 -2x +24\\}\\\\

ANSWER

User MilapTank
by
7.4k points