154,704 views
24 votes
24 votes
Solve the equation without using a calculator


\boldsymbol{4x√(2x-x^2) =2x-1}

Solve the equation without using a calculator \boldsymbol{4x√(2x-x^2) =2x-1}-example-1
User Noriaki
by
2.6k points

1 Answer

21 votes
21 votes

Answer:

x = 1.92888 (5 d.p.)

Explanation:

Given equation:


4x√(2x-x^2)=2x-1

Square both sides:


\implies (4x√(2x-x^2))^2=(2x-1)^2

Simplify:


\implies16x^2(2x-x^2)=4x^2-4x+1


\implies32x^3-16x^4=4x^2-4x+1


\implies -16x^4+32x^3-4x^2+4x-1=0

Solve using the Newton-Rhapson method.


\boxed{\begin{minipage}{8 cm}\underline{The Newton-Rhapson iteration for solving f$(x) = 0$}\\\\$x_(n+1)=x_n-\frac{\text{f}\left(x_n\right)}{\text{f}\:'\left(x_n\right)}$\\\end{minipage}}

If f(x) = 0 then:


\text{f}(x)= -16x^4+32x^3-4x^2+4x-1

Differentiate f(x) to find f'(x):


\implies \text{f}\:'(x)=-64x^3+96x^2-8x+4

This means the iteration formula is:


x_(n+1)=x_n-\frac{-16{x_n}^4+32{x_n}^3-4{x_n}^2+4{x_n}-1}{-64{x_n}^3+96{x_n}^2-8{x_n}+4}

Let x₀ = 2.

Substitute this into the formula to find x₁:


\begin{aligned} \implies x_1&=2-(-16(2)^4+32(2)^3-4(2)^2+4(2)-1)/(-64(2)^3+96(2)^2-8(2)+4)\\ & =2-(-9)/(-140)\\&=1.935714286\end{aligned}

Substitute x₁ into the iteration formula to find x₂:


\implies x_2=1.928947473

Repeat until the solution is found:


\implies x_3=1.928876009


\implies x_4=1.928876002


\implies x_5=1.928876002

Therefore, the solution to the given equation is x = 1.92888 (5 d.p.).

User The Welder
by
2.7k points