102k views
0 votes
A student decides to finance a used car over a 5-yr (60-month) period. After making a down

payment of $2000, the remaining cost of the car including tax and interest is $14,820. The
amount owed y = A(t) (in $) is given by A(t) = 14,820-247t, where t is the number of
months after purchase and 0 ≤t≤ 60. Determine the t-intercept and y-intercept and interpret
their meanings in context.

User EugeneK
by
8.1k points

1 Answer

4 votes

Answer:The t-intercept of a function is the point at which the function crosses the t-axis. To find the t-intercept of the function A(t) = 14,820 - 247t, we need to find the value of t when A(t) = 0. Setting A(t) = 0 and solving for t, we get:

14,820 - 247t = 0

t = (14820/247)

The t-intercept of the function is 60 months, which means that after 60 months (or 5 years) the amount owed on the car will be $0.

The y-interval of a function is the point at which the function crosses the y-axis. To find the y-intercept of the function A(t) = 14,820 - 247t, we need to find the value of A(t) when t = 0.

At t = 0, A(t) = 14,820 - 247(0) = 14,820.

The y-intercept of the function is $14,820 which means that before making the first payment, the cost of the car including tax and interest is $14,820.

Explanation:

User Chiheb Nexus
by
7.1k points