Given:
The compound inequality is
![9<3x+6\leq 15](https://img.qammunity.org/2022/formulas/mathematics/college/rr1rojoolbwtva9dfuy2gynzfs5t5r4bbk.png)
To find:
The solution for the given compound inequality in interval notation.
Solution:
We have,
![9<3x+6\leq 15](https://img.qammunity.org/2022/formulas/mathematics/college/rr1rojoolbwtva9dfuy2gynzfs5t5r4bbk.png)
Subtracting 6 from each side, we get
![9-6<3x+6-6\leq 15-6](https://img.qammunity.org/2022/formulas/mathematics/college/y0jrqcmc0r5j16bqcmg2f5spnsu6ce6slv.png)
![3<3x\leq 9](https://img.qammunity.org/2022/formulas/mathematics/college/uznu9taq0lalx97q15v5uw8xa3bgt1gur7.png)
Divide each side by 3.
![(3)/(3)<(3x)/(3)\leq (9)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/isopdgm57cubqh28olatoxanws0n66buau.png)
![1<x\leq 3](https://img.qammunity.org/2022/formulas/mathematics/college/bqt120pc54ogzet6r89brcx5jh1kt7e5g8.png)
Here, 1 is not included in the solution set and 3 is included in the solution set.
Therefore, the solution in interval notation is (1,3].