The value of the length of the rod is
L
=
22.80
c
m
The value of the linear charge density on the rod is
λ
=
2.85
×
10
−
6
m
−
1
From the higher end of the rod, the distance of the test point is
y
∘
=
65
c
m
According to Coulomb's Law,
The value of the electric field due to the small segment of the rod is,
d
E
=
k
d
q
r
2
d
r
d
E
=
k
λ
L
r
2
d
r
dE =
k
d
q
r
2
dr dE =
k
λ
L
r
2
dr
Where k is the electrostatic constant.
The distance of the lower end from the origin is
y
1
=
0
y
1
=
0
The distance o the higher end of the rod from the origin is
y
2
=
L
y
2
=
L
Thus, the distance of the test point from the lower end is,
y
′
=
y
2
+
y
∘
y
′
=
y
2
+
y
∘
The net electric field at the test charge due to the linear charge density of the rod is,
E
=
∫
y
′
y
∘
k
λ
L
r
2
d
r
E
=
k
λ
L
∫
y
′
y
∘
1
r
2
d
r
E
=
k
λ
L
[
−
1
r
]
y
′
y
∘
E
=
k
λ
L
[
−
1
y
′
+
1
y
∘
]
E =
∫
y
∘
y
′
k
λ
L
r
2
d
r
E =kλL
∫
y
∘
y
′
1
r
2
d
r
E =kλL
[
−
1
r
]
y
∘
y
′
E =kλL
[
−
1
y
′
+
1
y
∘
]
Substituting the known values,
E
=
8.99
×
10
9
×
2.85
×
10
−
6
×
22.8
×
10
−
2
[
−
1
(
22.80
+
65
)
×
10
−
2
+
1
65
×
10
−
2
]
E
=
2.33
×
10
3
N
−
1
E =8.99×
10
9
×2.85×
10
−
6
×22.8×
10
−
2
[
−
1
(
22.80
+
65
)
×
10
−
2
+
1
65
×
10
−
2
]
E =2.33×
10
3
N
−
1
Thus, the electric field at the test point is
2.33
×
10
3
N
−
1
2.33
×
10
3
N
−
1