82,950 views
11 votes
11 votes
Find the value of the hypotenuse in the triangleshown:1230°O6V3O 8V3O 123O 243

Find the value of the hypotenuse in the triangleshown:1230°O6V3O 8V3O 123O 243-example-1
User Elektronaut
by
2.5k points

1 Answer

18 votes
18 votes

We know that in a right triangle the cossine of an angle if giving by the formula:


\cos (\alpha)=(adjacent)/(Hypotenuse)

We also know that:


\cos (30\degree)=\frac{\sqrt[]{3}}{2}

Using those information in our triangle, we find:


\cos (30\degree)=(12)/(Hypotenuse)\text{ }\Rightarrow\text{ }\frac{\sqrt[]{3}}{2}=(12)/(Hypotenuse)\text{ }\Rightarrow\text{ }Hypotenuse=\frac{12*2}{\sqrt[]{3}}

Continuing with the algebra, we find:


Hypotenuse=\frac{24}{\sqrt[]{3}}*\frac{\sqrt[]{3}}{\sqrt[]{3}}\text{ = }\frac{24\sqrt[]{3}}{3}\text{ = 8}\sqrt[]{3}

So, our Hypotenuse is:


Hypotenuse\text{ = 8}\sqrt[]{3}

User Anthill
by
2.6k points