73.7k views
3 votes
M109) solve

cos²x + 2 cosx + 1 = 0

User Myplacedk
by
7.9k points

2 Answers

4 votes

Answer:

Explanation:

M109) solve cos²x + 2 cosx + 1 = 0-example-1
User Hikari
by
8.0k points
7 votes


\: \: \: \: \: \: \: \: \: \huge \color{green}{ \fbox \colorbox{black}{ \fbox{ \green {Answer} \: }}}


\longrightarrow \sf \color{teal}{ \cos {}^(2) (x) + 2 \cos(x) + 1} = 0


\longrightarrow \sf \color{teal}{ \cos {}^(2) (x) + \cos(x) + \cos(x) + 1} = 0


\longrightarrow \sf \color{teal}{ \cos {}^{} (x) ( \cos(x) + 1)+ 1(\cos(x) + 1} )= 0


\longrightarrow \sf \color{teal}{ ( \cos(x) + 1)(\cos(x) + 1} )= 0


\longrightarrow \sf \color{teal}{ ( (\cos(x) + 1} {}^{} ) {}^(2) = 0


\longrightarrow \sf \color{teal}{ ( (\cos(x) + 1} {}^{} ) {}^{} = 0


\longrightarrow \sf \color{teal}{ \cos(x) {}^{} }= - 1


\longrightarrow \sf \color{teal}{ x{}^{} }= \cos {}^( - 1)( - 1)


\longrightarrow \sf \color{teal}{ x = (2n + 1) \pi \: \: \: \: rad}

where,
{ n \in \{whole \:\; number\}}

Principle value -


\longrightarrow \sf \color{teal}{ x} {}^{} {}^{} = \cos {}^( - 1) ( - 1)


\longrightarrow \sf \color{teal}{ x} {}^{} {}^{} = (2n + 1) \pi \: \: \: \: rad \:

put n = 0


\longrightarrow \sf \color{teal}{ x} {}^{} {}^{} = (2(0) + 1) \pi \: \: \: \: rad \:


\longrightarrow \sf \color{teal}{ x} {}^{} {}^{} = (0 + 1) \pi \: \: \: \: rad \:


\longrightarrow \sf \color{teal}{ x} {}^{} {}^{} = \pi \: \: \: \: rad \: = 180 \degree

User Kayes
by
7.9k points