84.7k views
1 vote
Form a polynomial whose real zeros and degrees are given

Zeros: -2, 0, 7
Degree: 3
Type a polynomial with integer coefficients and a leading coefficient of 1
f(x)= ?

User Jaans
by
7.1k points

1 Answer

1 vote

Given ,


\bold\red{zeroes \: of \: a \: cubic \: polynomial \: are \: - 2 \:, \: 0 \: and \: 7} \\


let \:, \\ \boxed{\alpha \: = - 2} \\ \boxed{\beta \: = 0} \\ \boxed{\gamma \: = 7}

Now ,


sum \: of \: zeroes \: = \alpha \: + \: \beta \: + \: \gamma \: \\ \dashrightarrow \: sum = - 2 + 0 + 7 = \underline{5} \\ \\ sum \: of \: product \: of \: zeroes \: taken \: two \: at \: a \: time \: = \alpha\beta \: + \beta\gamma \: + \: \alpha\gamma \\ \dashrightarrow \: ( - 2)(0) \: + \: (0)(7) \: + \: (7)( - 2) \: = \: \underline{ - 14} \\ \\ product \: of \: zeroes \: = \: \alpha\beta\gamma \\ \dashrightarrow \: ( - 2)(0)(7) = \underline{0}

We know that ,


\boxed{cubic \: polynomial \: = {x}^(3) - (\alpha \: + \: \beta \: + \: \gamma \:) \:{x}^(2) + (\alpha\beta \: + \: \beta\gamma \: + \: \alpha\gamma) \:x \: - \: \alpha\beta\gamma}

Plugging in the values , we get


\boxed{f(x) = {x}^(3) - 5 {x}^(2) - 14x + 0}

since this polynomial has degree 3 , it is called a cubic polynomial.

hope helpful! :)

User Terphi
by
7.7k points