84.7k views
1 vote
Form a polynomial whose real zeros and degrees are given

Zeros: -2, 0, 7
Degree: 3
Type a polynomial with integer coefficients and a leading coefficient of 1
f(x)= ?

User Jaans
by
7.8k points

1 Answer

1 vote

Given ,


\bold\red{zeroes \: of \: a \: cubic \: polynomial \: are \: - 2 \:, \: 0 \: and \: 7} \\


let \:, \\ \boxed{\alpha \: = - 2} \\ \boxed{\beta \: = 0} \\ \boxed{\gamma \: = 7}

Now ,


sum \: of \: zeroes \: = \alpha \: + \: \beta \: + \: \gamma \: \\ \dashrightarrow \: sum = - 2 + 0 + 7 = \underline{5} \\ \\ sum \: of \: product \: of \: zeroes \: taken \: two \: at \: a \: time \: = \alpha\beta \: + \beta\gamma \: + \: \alpha\gamma \\ \dashrightarrow \: ( - 2)(0) \: + \: (0)(7) \: + \: (7)( - 2) \: = \: \underline{ - 14} \\ \\ product \: of \: zeroes \: = \: \alpha\beta\gamma \\ \dashrightarrow \: ( - 2)(0)(7) = \underline{0}

We know that ,


\boxed{cubic \: polynomial \: = {x}^(3) - (\alpha \: + \: \beta \: + \: \gamma \:) \:{x}^(2) + (\alpha\beta \: + \: \beta\gamma \: + \: \alpha\gamma) \:x \: - \: \alpha\beta\gamma}

Plugging in the values , we get


\boxed{f(x) = {x}^(3) - 5 {x}^(2) - 14x + 0}

since this polynomial has degree 3 , it is called a cubic polynomial.

hope helpful! :)

User Terphi
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories