Answer:
-34 - 24i
Explanation:
To calculate ( – 2 – 3i)^4, we can use the property that (a + bi)^n = a^n + (n*a^(n-1)b)i + (na^(n-2)*b^2)i^2 + ...
So, ( – 2 – 3i)^4 = (-2 - 3i) * (-2 - 3i) * (-2 - 3i) * (-2 - 3i)
= -2^4 - 2^3 * 3i - 2^2 * 3^2i^2 - 2 * 3^3i^3 - 3^4i^4
= -16 - 24i + 18i^2
= -16 - 24i -18
= -34 - 24i