165k views
1 vote
Consider the quadratic equation x squared minus 7 x minus 18 equals 0

Find the solutions by factoring.


x = -9, x = 2


x = -2, x = 9


x = -6, x = 3


x = -3, x = 6

User DexJ
by
7.6k points

1 Answer

4 votes

Answer:

x = -2, x = 9

Explanation:

Given quadratic equation:


x^2-7x-18=0

To factor a quadratic in the form ax²+bx+c, first find two numbers that multiply to ac and sum to b.


\implies ac=1 \cdot -18=-18


\implies b=-7

Therefore, the two numbers are: -9 and 2.

Rewrite b as the sum of these two numbers:


\implies x^2-9x+2x-18=0

Factor the first two terms and the last two terms separately:


\implies x(x-9)+2(x-9)=0

Factor out the common term (x - 9):


\implies (x+2)(x-9)=0

Apply the zero-product property:


\implies x+2=0 \implies x=-2


\implies x-9=0 \implies x=9

Therefore, the solutions to the given quadratic equation are:

  • x = -2, x = 9
User Nico AD
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories