175k views
0 votes
How can we use linear functions in real life

User Middas
by
7.6k points

2 Answers

3 votes

Answer:

Explanation:

Linear functions can be used in many real-world applications such as:

Economics: Linear functions can be used to model the relationship between the price of a product and the quantity of the product that will be sold.

Engineering: Linear functions can be used to model the relationship between force and displacement in elastic materials.

Sciences: Linear functions can be used to model the relationship between the concentration of a substance in a solution and the time it takes for that substance to be consumed or produced.

Business and Finance: Linear functions can be used to model the relationship between the cost of a product and the number of products produced.

Graphing: Linear functions can be used to graph the relationship between different variables.

Transportation: Linear functions can be used to model the relationship between the distance traveled and the time it takes to travel that distance at a constant speed.

Construction: Linear functions can be used to model the relationship between the height of a building and the number of floors in the building.

Weather forecasting: Linear functions can be used to model the relationship between temperature and time of the day.

User Fchen
by
7.5k points
2 votes

Answer:

I'm going to provide a real life case for this answer. I own and manage an online soccer jersey store and the process behind it is quite simple:

1. Receive order

2. Buy jerseys from supplier

3. Resell at an slighly higher price

4. Pay taxes + shipping

Now, say that "x" is the amount of jerseys my store sells in a month. I can use functions to create an expression that tells me what is the total net revenue I get from selling "x" amount of jerseys a month.

For example, say that the jerseys cost $50 and you sell them for 60$. You also need to pay the shipping for each jersey (say it is $5 per jersey). Then, we can form a function like this:


y=60x-50x-5x

As you can tell, the money that comes back to the seller ($60 dollars per jersey) is expressed as a possitive coefficient for variable "x" (number of sold jerseys). And, all the other costs, which is money that you spend in order to sell the jerseys, are expressed with a negative coefficient meaning that they are not net revenue, it isn't profit. Now, to see how much money you can make by selling 2 jerseys, simplify the function and substitute variable "x" (number of sold jerseys) by 1:


y=60x-55x\\ \\y=5x

Say "y" is the net revenue:


y=5(2)\\ \\y=10

You can also use functions to determine things such as, how many jerseys do I need to sell in order to make $750 of net revenue? In that case you do the following:


(750)=5x\\\\x=(750)/(5) \\ \\x=150

From this analysis, you can conclude that you need to sell 150 jerseys ij order to amke a net revenue of $750.

In conclusion, linear functions can be used to see how a variable value (normally called "x") can affect in the results in multiple daily situations: how many miles can your car run with a full tank, how much time do I need to work so I can buy a product, how much money I can spend in something so I can have saving of "x" amount at the end of the year, etc...

User Jackiexiao
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories