Answer:
Explanation:
Using the Law of Cosines, we can find the remaining angle measures of the triangle.
Angle D = cos-1[(25^2 - 8^2 - (25^2 * cos(131°)))/(-2*8*25)] = 20.5°
Angle E = cos-1[(8^2 - 25^2 - (8^2 * cos(131°)))/(-2*25*8)] = 61.4°
Angle F = 180° - (20.5° + 61.4°) = 98.1°
Round to the nearest tenth:
Angle D = 20.5°
Angle E = 61.4°
Angle F = 98.1°