368,144 views
19 votes
19 votes
Solve the equation using any method. Select the solution(s). -(x + 9)^2 = 64. POSSIBLE ANSWERS: A)x=-1 B) no real solution C) x=-(radical symbol here)1 D) x=(radical symbol here)1

User Thecrispywisp
by
2.3k points

1 Answer

25 votes
25 votes

B) no real solution

Step-by-step explanation


-(x+9)^2=64

Step 1

make


(a+b)^2=a^2+2ab+b^2

then


-(x+9)^2=-(x^2-2\cdot9\cdot x+9^2)=-(x^2+18x+81)=-x^2-18x-81

Hence


\begin{gathered} -x^2-18x-81=64 \\ -x^2-18x-81-64=0 \\ -x^2-18x-145=0 \end{gathered}

Step 2

find x, using the quadratic formula


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \end{gathered}

Let

a=-1

b=-18

c=-145

replace,


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{+18\pm\sqrt[]{-18^2-4\cdot-1\cdot-145}}{2a} \\ x=\frac{-18\pm\sqrt[]{324-580}}{-2} \\ \\ x=\frac{-18\pm\sqrt[]{-256}}{-2} \\ \end{gathered}

Now


\sqrt[]{-256}

is not a real number, so the answer is

B) no real solution

User Tnknepp
by
3.0k points