142k views
5 votes
NO LINKS!!! Part 3

Find an exponential function y = ab^x form that satisfies the given information

f. passes through (-1, 72.73) and (3, 106.48)

g. passes through (-2, 351.56225) and (3, 115.2)

h. passes through (4, 405) and (9, 98415)

1 Answer

3 votes

Answer:


\text{f)} \quad y=80(1.1)^x


\text{g)} \quad y=225(0.8)^x


\text{h)} \quad y=5(3)^x

Explanation:


\boxed{\begin{minipage}{9 cm}\underline{General form of an Exponential Function}\\\\$y=ab^x$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the initial value ($y$-intercept). \\ \phantom{ww}$\bullet$ $b$ is the base (growth/decay factor) in decimal form.\\\end{minipage}}

Part (f)

Given points:

  • (-1, 72.73)
  • (3, 106.48)

Substitute the given (x, y) points into the exponential function formula to create two equations:


\implies 72.73=ab^(-1)


\implies 106.48=ab^3

Divide the second equation by the first equation to eliminate a:


\implies (106.48)/(72.73)=(ab^3)/(ab^(-1))


\implies (106.48)/(72.73)=(b^3)/(b^(-1))

Solve for b:


\implies (106.48)/(72.73)=b^3 \cdot b^(1)


\implies (106.48)/(72.73)=b^(3+1)


\implies (106.48)/(72.73)=b^4


\implies b=1.09998968...


\implies b=1.1

Substitute the found value of b into one of the equations and solve for a:


\implies 72.73=a \cdot (1.09998968...)^(-1)


\implies a=80.0022499...


\implies a=80

Substitute the found values of a and b into the exponential function formula:


\implies y=80(1.1)^x

---------------------------------------------------------------------------------------

Part (g)

Given points:

  • (-2, 351.56225)
  • (3, 115.2)

Substitute the given (x, y) points into the exponential function formula to create two equations:


\implies 351.56225=ab^(-2)


\implies 115.2=ab^3

Divide the second equation by the first equation to eliminate a:


\implies (115.2)/(351.56225)=(ab^3)/(ab^(-2))


\implies (115.2)/(351.56225)=(b^3)/(b^(-2))

Solve for b:


\implies(115.2)/(351.56225)=b^3 \cdot b^(2)


\implies (115.2)/(351.56225)=b^(3+2)


\implies (115.2)/(351.56225)=b^5


\implies b=0.800000113...


\implies b=0.8

Substitute the found value of b into one of the equations and solve for a:


\implies 115.2=a(0.800000113...)^3


\implies a=224.999904


\implies a=225

Substitute the found values of a and b into the exponential function formula:


\implies y=225(0.8)^x

---------------------------------------------------------------------------------------

Part (h)

Given points:

  • (4, 405)
  • (9, 98415)

Substitute the given (x, y) points into the exponential function formula to create two equations:


\implies 405=ab^4


\implies 98415=ab^9

Divide the second equation by the first equation to eliminate a:


\implies (98415)/(405)=(ab^9)/(ab^4)


\implies 243=(b^9)/(b^4)

Solve for b:


\implies 243=b^9 \cdot b^(-4)


\implies 243=b^(9-4)


\implies 243=b^(5)


\implies b=3

Substitute the found value of b into one of the equations and solve for a:


\implies 405=a \cdot 3^4


\implies 81a=405


\implies a=5

Substitute the found values of a and b into the exponential function formula:


\implies y=5(3)^x

User Cpg
by
7.9k points