128k views
0 votes
Suppose cot(日) = = 2, where


12
5
○ 13
ㅇㅇㅇ
13

where n ㅠ
ㅇ픔

Suppose cot(日) = = 2, where ○ 12 5 ○ 13 ㅇㅇㅇ 13 晉 where n ㅠ ㅇ픔-example-1
User RJnr
by
8.1k points

1 Answer

3 votes

Answer: sinθ=-12/13

Explanation:


\displaystyle\\Given:\ cot\theta=(5)/(12) \ \ \ \ \pi < \theta < (3\pi )/(2) \ \ \ \ Find:\ sin\theta\\\\(cos\theta)/(sin\theta) =(5)/(12)

Multiply both parts of the equation by 12sinθ:


12cos\theta=5sin\theta

Squared both parts of the equation:


(12cos\theta)^2=(5sin\theta)^2\\\\144cos^2\theta=25sin^2\theta\ \ \ \ (1)\\


Find\ sin\theta

Add 144sin²θ to both parts of the equation (1):


144cos^2\theta+144sin^2\theta=25sin^2\theta+144sin^2\theta\\\\144(sin^2\theta+cos^2\theta)=169sin^2\theta\\\\144(1)=169sin^2\theta\\\\144=169sin^2\theta\\\\Thus,\ 169sin^2\theta=144

Divide both parts of the equation by 169:


\displaystyle\\sin^2\theta=(144)/(169) \\\\sin\theta=б\sqrt{(144)/(169) } \\\\sin\theta=б\sqrt{(12^2)/(13^2) } \\\\sin\theta=б\sqrt{((12)/(13))^2 } \\\\sin\theta=б(12)/(13)


\displaystyle\\As, \ \pi < \theta < (3\pi )/(2) \ \ \ \ \Rightarrow\ \ \ \angle\theta\ is \ in\ the\ 3rd\ quadrant\\\\ So \ sin\theta\ takes \ negative \ values\\\\sin\theta=-(12)/(13)

User Joe Ludwig
by
7.6k points