Answer:
Dimensions = 20 inches by 20 inches by 80 inches
The floor is 20 inches by 20 inches. The height is 80 inches.
The minimized cost is $2400.
========================================================
Work Shown:
h = height of the box, in inches
x = side length of the square base, in inches
x^2 = area of the floor = area of the ceiling
x^2h = volume of the rectangular box
x^2h = 32000
h = 32000/(x^2)
C = total cost in dollars
C = 0.25*(area of the sides) + 1.00*(area of the floor and ceiling)
C = 0.25*(xh+xh+xh+xh) + 1.00*(x^2+x^2)
C = 0.25*4xh + 1.00*2x^2
C = xh + 2x^2
C = x*(32000/(x^2)) + 2x^2
C = (32000/x) + 2x^2
C = (32000/x) + (x*2x^2)/x
C = (32000/x) + (2x^3)/x
C = (32000+2x^3)/x
The goal is to make C the smallest possible, aka we want to minimize it.
Visually we want the lowest point on the cost curve.
We have two options to get this task done:
- Use a graphing calculator.
- Use calculus (specifically derivatives).
I'll assume your teacher hasn't gone over calculus at this point. I'll go for option 1 mentioned above.
Use a graphing tool like GeoGebra to plot out the cost function curve. See the diagram below. The lowest point on this curve is at (20,2400). I used the "min" function to determine this lowest point. Keep in mind that x > 0.
This lowest point indicates to us that x = 20 causes C(x) to be the smallest at $2400. This is the minimized cost.
Therefore, the square base should be 20 inches by 20 inches. The height should be:
h = 32000/(x^2) = 32000/(20^2) = 80 inches
The box should be 20 inches by 20 inches by 80 inches.
------------------------
Check:
Volume = length*width*height = 20*20*80 = 32000 cubic inches
This helps verify the answer.