118k views
3 votes
Could one side length of a function ever produce two different perimeters?

User Malatesh
by
8.3k points

1 Answer

1 vote

Answer: A perimeter is the total length of all the sides of a polygon. It is calculated by adding up the lengths of all the sides of the polygon. For a polygon with distinct and non-overlapping sides, each side length contributes exactly once to the perimeter. So in such case, a side length of a polygon can never produce two different perimeters.

However, it's worth mentioning that, one side length of a function could be a side of a polygon and the other could be a side of another shape. Also, it's possible that a single side length of an object is connected to a different set of side length, generating different perimeters.

For example, the length of an arc of a circle can be considered as a "side length" of the circle and it can be used to calculate both the perimeter of the arc and the circumference of the full circle, which are different measurements.

Also, a circular pool has a radius, but it's perimeter is the circumference, and this length is produced by the same radius but it's a different perimeter from the length of the radius.

In summary, a side length can produce different perimeter if we are talking about different shapes and measurements.

Explanation:

User Iayork
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories