40.1k views
2 votes
Match each power of a power expression with its simplified expression.

(4-3)-3
(46)-3
(49)-9
(-49)²


1
418
49
(-4)18
40
need to know which one goes to which

User Gflegar
by
8.9k points

2 Answers

1 vote

Answer:

(4^6)^-3 = 1/4^18(4^0)^-9 = 4^0(4^-3)^-3 = 4^9(-4^9)^2= (-4)^18Step-by-step explanation:(4^6)^-3 = 1/4^18(4^6)^-3= 4^(6*-3)(4^6)^-3= 1/4^18(4^0)^-9 = 4^0(4^0)^-9 = 4^(0*-9)(4^0)^-9= 4^0(4^-3)^-3 = 4^9(4^-3)^-3= 4 ^ (-3*-3)(4^-3)^-3 = 4^(9)(-4^9)^2= (-4)^18(-4^9)^2= -4^(9*2)(-4^9)^2=(-4)^18

Explanation:

User Omer Iqbal
by
8.2k points
1 vote

Answer:


(4^(-3))^(-3)=4^9


(4^6)^(-3)=(1)/(4^(18))


(4^0)^(-9)=4^0


(-4^9)^2=(-4)^(18)

Explanation:


\boxed{\begin{minipage}{3 cm}\underline{Exponent Rules}\\\\$(a^b)^c=a^(bc)$\\\\$a^(-n)=(1)/(a^n)$\\\end{minipage}}

Apply the above exponent rules to simplify each expression.


\begin{aligned}\implies (4^(-3))^(-3)&=4^(-3 * -3)\\&=4^9\end{aligned}


\begin{aligned}\implies (4^6)^(-3)&=4^(6 * -3)\\&=4^(-18)\\&=(1)/(4^(18))\end{aligned}


\begin{aligned}\implies (4^0)^(-9)&=4^(0 * -9)\\&=4^0\end{aligned}


\begin{aligned}\implies (-4^9)^2&=(-4)^(9 * 2)\\&=(-4)^(18)\end{aligned}

User Sean Werkema
by
7.6k points