385,005 views
40 votes
40 votes
Find the angle (in degrees) between the vectors. (Round your answer to two decimal places.)

Find the angle (in degrees) between the vectors. (Round your answer to two decimal-example-1
User Maritim
by
2.5k points

1 Answer

22 votes
22 votes

You have to use the following formula to calculate the angle between TWO vectors:


\cos \left(\theta \right)\:=\frac{\vec{a\:}\cdot \vec{b\:}}{\left|\vec{a\:}\right|\cdot \left|\vec{b\:}\right|}

In this case the vector u will be the vector a, and the vector v will be the vector b

To replace the formula, we have to know the dot product:

In this case a * b

Multiply each i and each j


\vec{a\:}\cdot\vec{b\:}=\text{ \lparen}ai*bi)+(aj*bj)
\vec{a\:}\cdot\vec{b\:}=\text{ \lparen}3*-7)+(4*5)=-21+20=-1

Now


|a|=√(ai^2+aj^2)=√(3^2+4^2)=√(25)=5
|b|=√(bi^2+bj^2)=√((-7)^2+5^2)=√(74)

Now replace in


\cos(\theta)=\frac{\vec{a}\vec{b}}{\lvert\vec{a}\rvert\lvert\vec{b}\rvert}
\cos \left(θ\right)=-(1)/(5√(74))

Clear Cos with ArcCos


θ=\arccos\left(\cos\left(θ\right)\right)=\arccos\left(-(1)/(5√(74))\right)

ANS:


θ=\text{ 91.33221985\degree}

User Fabian Winkler
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.