161k views
4 votes
Find the equation of a line that passes through the points (2,7) and (4,6). Leave your answer in the form y = mx + c​

User ULLAS K
by
7.6k points

1 Answer

2 votes


(\stackrel{x_1}{2}~,~\stackrel{y_1}{7})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{6}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{6}-\stackrel{y1}{7}}}{\underset{\textit{\large run}} {\underset{x_2}{4}-\underset{x_1}{2}}} \implies \cfrac{ -1 }{ 2 } \implies - \cfrac{ 1 }{ 2 }


\begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{7}=\stackrel{m}{- \cfrac{ 1 }{ 2 }}(x-\stackrel{x_1}{2}) \\\\\\ y-7=- \cfrac{ 1 }{ 2 }x+1\implies {\Large \begin{array}{llll} y=- \cfrac{ 1 }{ 2 }x+8 \end{array}}

User Ermat Alymbaev
by
7.4k points