We have a general quartic model for the average selling price (S) as a function of the number of years passed since 1998 (x):
S(x) = a*x⁴ + b*x³ + c*x² + d*x + e
We can calculate the value of x for every year:
1998: x = 0
2003: x = 5
2010: x = 12
2012: x = 14
2015: x = 17
2020: x = 22
Now, we have the equations (given by the table):
S(0) = 144 000
S(5) = 174 600
S(12) = 175 120
S(14) = 180 500
S(17) = 203 000
Or:
For x = 0:
a*0⁴ + b*0³ + c*0² + d*0 + e = 144 000 => e = 144 000 ...(1)
For x = 5:
a*5⁴ + b*5³ + c*5² + d*5 + 144 000 = 174 600
625a + 125b + 25c + 5d = 30 600
Dividing by 5:
125a + 25b + 5c + d = 6120 ...(2)
For x = 12:
a*12⁴ + b*12³ + c*12² + d*12 + 144 000 = 175 120
20736a + 1728b + 144c + 12d = 31 120
Dividing by 4:
5184a + 432b + 36c + 3d = 7780 ...(3)
For x = 14:
a*14⁴ + b*14³ + c*14² + d*14 + 144 000 = 180 500
19208a + 1372b + 98c + 7d = 18250 ...(4)
For x = 17:
a*17⁴ + b*17³ + c*17² + d*17 + 144 000 = 203 000
17⁴a + 17³b + 17²c + 17d = 59000 ...(5)
Solving (2), (3), (4), and (5) for a, b, c, and d:
a = -(151/3213)
b = 187006/3213
c = -(4763263/3213)
d = 12941200/1071
Now, for the year 2020, we use these numbers and x = 22:
S(22) = -(151/3213)*22^4 + (187006/3213)*22^3 - (4763263/3213)*22^2 + (12941200/1071)*22 + 144 000
S(22) = $301 039.259