Answer:
226a³b² - 824ab³ + 984b⁴
Explanation:
We can factorize the given expression by expanding the two binomials and then combining like terms.
First, expand the two binomials:
10ab (a − 2b)³ +24ab² (3a − 6b)² = 10ab(a³ - 6a²b + 12ab² - 8b³) + 24ab²(9a² - 36ab + 36b²)
Then, combine like terms:
= 10ab(a³ - 6a²b + 12ab² - 8b³) + 24ab²(9a² - 36ab + 36b²)
= (10a³b - 60a²b² + 120ab³ - 80b⁴) + (216a³b² - 864ab³ + 864b⁴)
= (10a³b + 216a³b² - 60a²b² - 864ab³ + 120ab³ + 864b⁴ - 80b⁴)
= (10a³b + 216a³b² - 60a²b² - 864ab³ + 120ab³ + 864b⁴ - 80b⁴)
= (10a³b - 60a²b² + 120ab³ - 80b⁴) + (216a³b² - 864ab³ + 864b⁴)
= (10a³b + 216a³b² - 60a²b² - 864ab³ + 120ab³ + 864b⁴ - 80b⁴)
= (10a³b - 60a²b² + 120ab³ - 80b⁴) + (216a³b² - 864ab³ + 864b⁴)
= 226a³b² - 824ab³ + 984b⁴