125k views
5 votes
Factorize the expression, 10ab (a − 2b)³ +24ab² (3a − 6b)²

User Leafeater
by
8.1k points

2 Answers

1 vote

Answer:

226a³b² - 824ab³ + 984b⁴

Explanation:

We can factorize the given expression by expanding the two binomials and then combining like terms.

First, expand the two binomials:

10ab (a − 2b)³ +24ab² (3a − 6b)² = 10ab(a³ - 6a²b + 12ab² - 8b³) + 24ab²(9a² - 36ab + 36b²)

Then, combine like terms:

= 10ab(a³ - 6a²b + 12ab² - 8b³) + 24ab²(9a² - 36ab + 36b²)

= (10a³b - 60a²b² + 120ab³ - 80b⁴) + (216a³b² - 864ab³ + 864b⁴)

= (10a³b + 216a³b² - 60a²b² - 864ab³ + 120ab³ + 864b⁴ - 80b⁴)

= (10a³b + 216a³b² - 60a²b² - 864ab³ + 120ab³ + 864b⁴ - 80b⁴)

= (10a³b - 60a²b² + 120ab³ - 80b⁴) + (216a³b² - 864ab³ + 864b⁴)

= (10a³b + 216a³b² - 60a²b² - 864ab³ + 120ab³ + 864b⁴ - 80b⁴)

= (10a³b - 60a²b² + 120ab³ - 80b⁴) + (216a³b² - 864ab³ + 864b⁴)

= 226a³b² - 824ab³ + 984b⁴

User GrahamA
by
7.4k points
4 votes
2ab(5a^3+392b^3+78a^2b-372ab^2)



Explanation : Group and factor out the greatest common factor (GCF), then combine.
Factorize the expression, 10ab (a − 2b)³ +24ab² (3a − 6b)²-example-1
User Laurent Etiemble
by
7.9k points