52.2k views
3 votes
50 POINTS!!!
I NEED STEPS

50 POINTS!!! I NEED STEPS-example-1
User Ventsyv
by
8.0k points

1 Answer

1 vote

Answer:


(3)/(a-6)\quad \textsf{if}\;\;a \\eq -6,a \\eq 6

Explanation:

Given expression:


(a)/(a-6)-(3)/(a+6)+(a^2)/(36-a^2)

Rewrite the third fraction:


\implies (a^2)/(36-a^2)=(-a^2)/(-(36-a^2))=(-a^2)/(a^2-36)


\boxed{\begin{minipage}{4 cm}\underline{Difference of two squares }\\\\$x^2-y^2=(x-y)(x+y)$\\\end{minipage}}

Apply the difference of two squares to the denominator of the third fraction:


\implies a^2-36=a^2-6^2=(a-6)(a+6)

Therefore the expression can be written as:


\implies (a)/(a-6)-(3)/(a+6)+(-a^2)/((a-6)(a+6))


\implies (a)/(a-6)-(3)/(a+6)-(a^2)/((a-6)(a+6))

The least common multiplier (LCM) of the denominator is (a - 6)(a + 6).

Adjust the fractions based on the LCM:


\implies (a(a+6))/((a-6)(a+6))-(3(a-6))/((a-6)(a+6))-(a^2)/((a-6)(a+6))

Simplify:


\implies (a^2+6a)/((a-6)(a+6))-(3a-18)/((a-6)(a+6))-(a^2)/((a-6)(a+6))


\textsf{Apply the fraction rule} \quad (a)/(c)-(b)/(c)-(d)/(c)=(a-b-d)/(c):


\implies (a^2+6a-(3a-18)-a^2)/((a-6)(a+6))

Simplify:


\implies (3a+18)/((a-6)(a+6))

Factor out 3 from the numerator:


\implies (3(a+6))/((a-6)(a+6))

Cancel the common factor (a + 6):


\implies (3)/(a-6)

Therefore:


(a)/(a-6)-(3)/(a+6)+(a^2)/(36-a^2)=(3)/(a-6)\quad \textsf{if}\;\;a \\eq -6,a \\eq 6

User Gate
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories