31.8k views
3 votes
I dont know how to prove the equation below...pls help prove it with clear steps, i have no clue how does sin^2x can go into 1+cosx

I dont know how to prove the equation below...pls help prove it with clear steps, i-example-1

1 Answer

4 votes

Answer:

Answer:

Foci: (±5, 0)

Vertex: ( ±4 , 0)

Eccentricity: e = 5/4

Explanation:

Hyperbola:

Write the equation of hyperbola in the form,

\boxed{\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1}

a

2

x

2

b

2

y

2

=1

9x² - 16y² = 144

Divide the entire equation by 144,

\begin{gathered}\sf \dfrac{9x^2}{144}-\dfrac{16y^2}{144}=\dfrac{144}{144}\\\\\\ \dfrac{x^2}{16}-\dfrac{y^2}{9}=1\\\\\\\dfrac{x^2}{4^2}-\dfrac{y^2}{3^2}=1\end{gathered}

144

9x

2

144

16y

2

=

144

144

16

x

2

9

y

2

=1

4

2

x

2

3

2

y

2

=1

a = 4 and b =3

Eccentricity: e

\boxed{e=\sqrt{1+\dfrac{b^2}{a^2}}}

e=

1+

a

2

b

2

\begin{gathered}\sf = \sqrt{1+\dfrac{9}{16}}\\\\=\sqrt{\dfrac{16}{16}+\dfrac{9}{16}}\\\\=\sqrt{\dfrac{25}{16}}=\sqrt{\dfrac{5*5}{4*4}}\\\\\\=\dfrac{5}{4}\end{gathered}

=

1+

16

9

=

16

16

+

16

9

=

16

25

=

4∗4

5∗5

=

4

5

Foci:

(ae, 0) & (-ae , 0)

\begin{gathered}\sf \left(4*\dfrac{5}{4},0 \right) \ ; \ \left( -4*\dfrac{5}{4},0 \right)\\\\\\(5, 0) \ ; \ (-5,0)\end{gathered}

(4∗

4

5

,0) ; (−4∗

4

5

,0)

(5,0) ; (−5,0)

Vertex of hyperbola:

The vertex of the hyperbola is a point where the hyperbola cuts the axis. (-a , 0) ; (a , 0)

Vertex : (-4 , 0) ; (4 , 0)

User Bland
by
7.6k points