84.3k views
0 votes
Show that log ab×log ba =1​

1 Answer

2 votes

Answer:

See below for proof.

Explanation:

Given:


\log_ab * \log_ba=1

To prove the given equation, begin by changing the base of the two logs so that they have the same base.


\boxed{\textsf{Change of base}: \quad \log_pr=(\log_xr)/(\log_xp)}

Change the base of both logs to x by using the change of base formula:


\implies \log_ab=(\log_xb)/(\log_xa)


\implies \log_ba=(\log_xa)/(\log_xb)

Substitute into the equation:


\implies \log_ab * \log_ba=(\log_xb)/(\log_xa) * (\log_xa)/(\log_xb)


\textsf{Apply the fraction rule} \quad (a)/(c)* (b)/(d)=(a * b)/(c * d):


\implies (\log_xb * \log_xa)/(\log_xa * \log_xb)

Apply the commutative property of multiplication to the numerator:


\implies (\log_xa * \log_xb)/(\log_xa * \log_xb)

Cancel the common factor logₓb:


\implies (\log_xa)/(\log_xa)


\textsf{Apply the fraction rule} \quad (n)/(n)=1:


\implies (\log_xa)/(\log_xa)=1

Hence proving that:


  • \log_ab * \log_ba=1

In one calculation:


\begin{aligned}\implies \log_ab * \log_ba & =(\log_xb)/(\log_xa) * (\log_xa)/(\log_xb)\\\\&=(\log_xb * \log_xa)/(\log_xa * \log_xb)\\\\&=(\log_xa * \log_xb)/(\log_xa * \log_xb)\\\\&=(\log_xa)/(\log_xa)\\\\&=1\end{aligned}

User Roman Zakharov
by
6.6k points