123k views
1 vote
Use the quadratic formula to find the complex solutions to the equation 10x²-x+9

= 0.
=
OA)
OB)
OD)
X =
-1+√359i
20
-1± √359i
20
1± √359/
2
1± √359/
20

1 Answer

2 votes

Answer:


x = (1 +√(359)i )/(20) , x = (1 -√(359)i )/(20)

Explanation:

Given equation is


10x^2 - x + 9 = 0

The standard Solution of a quadratic equation is:


x = (-b +- √(b^2 - 4ac) )/(2a)

given a = 10, b = -1, c = 9, so


x = (1 +- √((-1)^2 - 4*10*9) )/(20)\\x = (1 +- √(1 - 360) )/(20)\\x = (1 +- √(-359) )/(20)

So roots are:


x = (1 +√(359)i )/(20) , x = (1 -√(359)i )/(20)

User Kareme
by
7.7k points