170k views
1 vote
Rationalize the denominator and simplify. √(a+1)-2 / √(a+1)+2​

User Bouvard
by
7.7k points

1 Answer

3 votes

Answer:


(a-4√(a+1)+5)/(a-3)

Explanation:

Given rational expression:


(√(a+1)-2)/(√(a+1)+2)

To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator.

The conjugate of a binomial is where we change the sign between the two terms of the binomial. So the conjugate of √(a+1)+2​ is √(a+1)-2​.

Therefore:


\implies (√(a+1)-2)/(√(a+1)+2) \cdot (√(a+1)-2)/(√(a+1)-2)


\implies ((√(a+1)-2)(√(a+1)-2))/((√(a+1)+2)(√(a+1)-2))


\implies ((a+1)-4√(a+1)+4)/((a+1)-4)


\implies (a-4√(a+1)+5)/(a-3)

User Stanislas Morbieu
by
8.1k points