123k views
3 votes
Find the measures of an exterior angle and an interior angle given a regular polygon with 7 sides. Round to the nearest tenth, if necessary.

User Baldu
by
8.6k points

1 Answer

3 votes


\underset{in~degrees}{\textit{sum of all interior angles}}\\\\ n\theta = 180(n-2) ~~ \begin{cases} n=\stackrel{number~of}{sides}\\ \theta = \stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ n=7 \end{cases}\implies 7\theta =180(7-2) \\\\\\ 7\theta =900\implies \theta =\cfrac{900}{7}\implies \theta =128(4)/(7)\implies \theta \approx 128.57^o \\\\[-0.35em] ~\dotfill


\underset{in~degrees}{\textit{sum of all exterior angles}}\\\\ n\beta = 360 ~~ \begin{cases} n=\stackrel{number~of}{sides}\\ \beta = \stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ n=7 \end{cases}\implies 7\beta=360 \\\\\\ \beta=\cfrac{360}{7}\implies \beta=51(3)/(7)\implies \beta\approx 51.43^o

User Plastic Sturgeon
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories