![~~~~~~~~~~~~ \textit{Amortized Loan Value} \\\\ pymt=P\left[ \cfrac{(r)/(n)}{1-\left( 1+ (r)/(n)\right)^(-nt)} \right]\implies pymt=P\left[ \cfrac{(r)/(n)}{1-\left((n)/(n+r)\right)^(nt)} \right]](https://img.qammunity.org/2024/formulas/mathematics/college/vgsgwe5jht6v9eh1isu10rl4xmkk8uuief.png)

![pymt=48000\left[ \cfrac{(0.061)/(12)}{1-\left((12)/(12+0.061)\right)^(12 \cdot 6)} \right] \\\\\\ pymt=48000\left[ \cfrac{(61)/(12000)}{ ~~ (18249137)/(59666181) ~~ } \right] \implies {\Large \begin{array}{llll} pymt \approx 797.77 \end{array}}](https://img.qammunity.org/2024/formulas/mathematics/college/9ymkyod0qan4trb7x8btedq3adsvnpe7ao.png)
well, Linda is paying that much every month for 6 years or namely 72 months, so the total for those 72 months will simply be 72(797.77) ≈ 57439.44.
hmmmm what's the interest? well, if we simply subtract the principal from the total amount Linda is paying that'll be 57439.44 - 48000 ≈ 9439.44.