71.2k views
2 votes
Find dy/DX
y = 3ex
y = x2ex
y = ex/x3​

User HYk
by
7.6k points

1 Answer

3 votes

Answer:


a) (d)/(dx) (3e {}^(x) ) \\

Recall the property


(d)/(dx) [c * f(x)] = c * f'(x) \\


= 3 (d)/(dx) e {}^(x) = 3e {}^(x) \\


b.) \: \: (d)/(dx) (x {}^(2) e {}^(x) ) \\


= x {}^(2) * e {}^(x) +e {}^(x) * 2x \\


= e {}^(x) (x {}^(2) * 2x) \\


c.) \: \: (d)/(dx)( \frac{e {}^(x) }{x {}^(3) } ) \\


= \frac{x {}^(3) * e {}^(x) - e {}^(x) * {3x}^(2) }{ {x}^(6) } \\


= \frac{x {}^(2) {e}^(x) (x - 3) }{ {x}^(6) } \\


= \frac{ {e}^(x) (x - 3) }{ {x}^(4) } \\

User Benmmurphy
by
7.2k points