179k views
1 vote
Question 1 Part A: (4 Points): A researcher is following the growth of a particular type of flower. She writes the given equation to show the height of the flower g(n), in inches, and n days.

Complete the inequality below by dragging and dropping the answers on the left into the given boxes

Question 1 Part A: (4 Points): A researcher is following the growth of a particular-example-1

1 Answer

4 votes

Answer:

0 ≤ n ≤ 5

Explanation:

We have the function for growth as

g(n) = 10(1.02)^n

We also know that after a specific n days, the flower has grown to 11.04 inches

Since g(n) represents the height of the flower, we can substitute 11.04 for g(n) and solve for n

∴We get


11.04 = 10(1.02)^n

Switching sides we get


10(1.02)^n = 11.04

Divide both sides by 10 to get


1.02^n = 1.104

Take log on both sides


\log(1.02^n) = \log(1.104)


\log(x^a) = a \log(x)

So


\log(1.02^n) = n \log(1.02)

Therefore


n \log(1.02) = \log(1.104)


n = (\log(1.104))/(\log(1.02))

Using a calculator this works out to


n = 4.9963

Therefore it takes at least these many days for the flower to reach 11.04 inches

Rounding number of days to 5, we get the right side of the inequality as n ≤ 5

n cannot be negative so it starts of with a value of 0 so on the right side of the inequality we get n ≥ 0 which can be rewritten as 0 ≤ n

Together the domain of n can be represented as

0 ≤ n ≤ 5

Hope that helps

User Larue
by
8.3k points