139k views
0 votes
Who to find the point-slope form and slope-intercept form of The line passes through the two points (4,-2) and (-8,1)?

User Caleb Liu
by
8.3k points

1 Answer

6 votes


(\stackrel{x_1}{4}~,~\stackrel{y_1}{-2})\qquad (\stackrel{x_2}{-8}~,~\stackrel{y_2}{1}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{1}-\stackrel{y1}{(-2)}}}{\underset{\textit{\large run}} {\underset{x_2}{-8}-\underset{x_1}{4}}} \implies \cfrac{1 +2}{-8 -4} \implies \cfrac{ 3 }{ -12 } \implies - \cfrac{ 1 }{ 4 }


\begin{array} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-2)}=\stackrel{m}{- \cfrac{ 1 }{ 4 }}(x-\stackrel{x_1}{4}) \implies y +2 = - \cfrac{ 1 }{ 4 } ( x -4)


y+2=- \cfrac{ 1 }{ 4 }x+1\implies y=- \cfrac{ 1 }{ 4 }x-1 ~~ \impliedby ~~ \begin{array}ll \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

User Harny Otuoniyo
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories