513,526 views
12 votes
12 votes
Find dy over dxA) 2x+1 over x power 4 + 2

User Mattforni
by
2.7k points

1 Answer

28 votes
28 votes

Explanation:

Given y defined below:


y=(2x+1)/(x^4+2)

To find the derivative of y, we use the quotient rule.


(d)/(dx)((u)/(v))=(v(du)/(dx)-u(dv)/(dx))/(v^2)

In the function:


\begin{gathered} u=2x+1\implies(du)/(dx)=2 \\ v=x^4+2\implies(dv)/(dx)=4x^3 \end{gathered}

Substitute these values into the formula:


(d)/(dx)((u)/(v))=(2(x^4+2)-4x^3(2x+1))/((x^4+2)^2)

We then simplify:


\begin{gathered} (dy)/(dx)=(2x^4+4-8x^4-4x^3)/((x^4+2)^2) \\ =(2x^4-8x^4-4+4x^3)/((x^4+2)^2) \\ =(-6x^4+4x^3-4)/((x^4+2)^2) \\ =(-2(3x^4+2x^3-2))/((x^4+2)^2) \end{gathered}

Answer:

The derivative dy/dx of the given function is:


(dy)/(dx)=(-2(3x^(4)+2x^(3)-2))/((x^(4)+2)^(2))

User Tanishia
by
2.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.