Answer:


Explanation:
The domain of a function is the set of all possible input values (x-values).
Function composition is an operation that takes two functions and produces a third function.
Therefore:
- f + g means to add function f(x) to function g(x).
- f - g means to subtract function g(x) from function f(x).
- f o g means to substitute the function g(x) in place of the x in function f(x).
- f/g means to divide function f(x) by function g(x).
Question 1
Given functions:


Domain of f + g: (-∞, ∞)

Domain of f - g: (-∞, ∞)
![\begin{aligned} \implies f \circ g&=f[g(x)]\\&=3[g(x)]-1\\&=3(2x+3)-1\\&=6x+9-1\\&=6x+8\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/high-school/nwiqsvbz39m6mo4k4zekd8u2u3h5q0kt04.png)
Domain of f o g: (-∞, ∞)

Domain of f/g: (-∞, -1.5) ∪ (-1.5, ∞)
Question 2
Given functions:


Domain of f + g: (-∞, ∞)

Domain of f - g: (-∞, ∞)
![\begin{aligned}\implies f \circ g&=f[g(x)]\\&=g(x)-5\\&=(4x-7)-5\\&=4x-7-5\\&=4x-12\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/high-school/hocw84hrev2xp7c3tmjhrolibndojrsle1.png)
Domain of f o g: (-∞, ∞)

Domain of f/g: (-∞, ⁷/₄) ∪ (⁷/₄, ∞)