23.5k views
20 votes
Please help!!!!!!!:>

Please help!!!!!!!:>-example-1

2 Answers

8 votes

Answer:


\boxed{\boxed{\sf{(x-3)(x+16)~or~(x+16)(x-3)}}}

Solution Steps:

______________________________

1.) Factor the expression by grouping:

- First, the expression needs to be rewritten as
x^2+ax+bx-48. To find a and b, set up a system to be solved:


  • a+b=13

  • ab=1(-48)=-48

2.) List all such integer pairs that give product −48:


  • -1,48

  • -2,24

  • -3,16

  • -4,12

  • -6,8

3.) Calculate the sum for each pair:


  • -1+48=47

  • -2+24=22

  • -3+16=13

  • -4+12=8

  • -6+8=2

4.) The solution is the pair that gives sum 13:


  • a=-3

  • b=16

5.) Rewrite
\bold{x^2+13x-48}:


  • x^2+13x-48=(x^2-3x)+(16x-48)

6.) Factor out
\bold{(x)} in the first and 16 in the second group:


  • x(x-3)+16(x-3)

7.) Factor out common term
\bold{x-3} by using distributive property:


  • (x-3)(x+16)

So your answer is
\bold{(x-3)(x+16)} or
\bold{(x+16)(x-3)}.

______________________________

User Newshorts
by
3.0k points
10 votes

Answer:

answer is (x+16)(x-3) I'm sure

User Andrei Cusnir
by
3.5k points