233k views
1 vote
Find the value of its determinant ~


\sf A = \begin{vmatrix} 1\: \: 2\: \: 1 \\ 2 \: \: 1 \: \: 2 \\ 1 \: \: 2 \: \: 1\end{vmatrix}


1 Answer

3 votes


\sf = \begin{vmatrix} 1\: \: 2\: \: 1 \\ \sf2 \: \: 1 \: \: 2 \\\sf 1 \: \: 2 \: \: 1\end{vmatrix} \\ \\ =\sf \begin{vmatrix} 1\: \: 2\\ \sf2 \: \: 1 \end{vmatrix} - 2 * \begin{vmatrix} 2\: \: 2\\ \sf 1 \: \: 1 \end{vmatrix} + \begin{vmatrix} 2\: \: \\\sf 1 \: \: 2 \end{vmatrix} \\ \\\sf \sf = ( 1 - 2 * 2) - 2(2 - 2) + (2 * 2 - 1) \\ \\ \sf= (1 - 4) - 2 * 0 + (4 - 1) \\ \\\sf = \cancel{ - 3} - 0 + \cancel3 \\ \\ \sf = 0

User Thomasrutter
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories