142k views
5 votes
the length of a rectangle is 4 cm more than the width and the perimeter is at least 48cm. what are the smallest possible dimensions for the rectangle?

2 Answers

4 votes
L=W+4, so the entire rectangle is 4W+8 because 2(W+4)+2(W). If the perimeter is at least 48, then 4W+8=48 at the least. So, using simple algebra, we can take 8 away from both sides, making 4W=40. Then, we divide both sides by 4, therefore W=10. This is the width. To find the length, we will just add 4. So, the dimensions are 10x14.
User Mcstrother
by
8.6k points
5 votes
x=length
x+4=width

2(x+4)+2x=48

2x+8+2x=48

4x=40

x=10
It means that length will be equal 10 and width 14 :)
so dimensions of this rectangle is 10x14 :)
User Ruchi Makadia
by
8.5k points