Answer:
STEP
1
:
Equation at the end of step 1
(4x•((xy+(2•(y2)))-3y))-((2•(y2))•((2x2+4xy)+2x))
STEP
2
:
Equation at the end of step
2
:
(4x•((xy+(2•(y2)))-3y))-(2y2•(2x2+4xy+2x))
STEP
3
:
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
2x2 + 4xy + 2x = 2x • (x + 2y + 1)
Multiplying exponents:
4.2 21 multiplied by 21 = 2(1 + 1) = 22
Equation at the end of step
4
:
(4x•((xy+(2•(y2)))-3y))-22xy2•(x+2y+1)
STEP
5
:
Equation at the end of step
5
:
(4x•((xy+2y2)-3y))-22xy2•(x+2y+1)
STEP
6
:
STEP
7
:
Pulling out like terms
7.1 Pull out like factors :
xy + 2y2 - 3y = y • (x + 2y - 3)
Equation at the end of step
7
:
4xy • (x + 2y - 3) - 22xy2 • (x + 2y + 1)
STEP 8:
Pulling out like terms
9.1 Pull out like factors :
-4x2y2 + 4x2y - 8xy3 + 4xy2 - 12xy =
-4xy • (xy - x + 2y2 - y + 3)
Final result :
-4xy • (xy - x + 2y2 - y + 3)
Explanation: