112k views
0 votes
How many roots do the following equations have? -12x^2 - 25x+5 +x^3=0

User YSelf
by
7.0k points

2 Answers

1 vote

-12x^2 - 25x + 5 + x^(3) = 0

x^(3) - 12x^(2) - 25x + 5 = 0

x = \sqrt[3]{((-b^(3))/(27a^(3)) + (bc)/(6a^(2)) - (d)/(2a)) + \sqrt{((-b^(3))/(27a^(3)) + (bc)/(6a^(2)) - (d)/(2a))^(2) + ((c)/(3a) - (b^(2))/(9a^(2)))^(3)}} + \sqrt[3]{((-b^(3))/(27a^(3)) + (bc)/(6a^(2)) - (d)/(2a)) - \sqrt{((-b^(3))/(27a^(3)) + (bc)/(6a^(2)) - (d)/(2a))^(2) + ((c)/(3a) - (b^(2))/(9a^(2)))^(3)}} - (b)/(3a)

x = \sqrt[3]{((-(-12)^(3))/(27(1)^(3)) + ((-12)(-25))/(6(1)^(2)) - (5)/(2(1))) + \sqrt{((-(-12)^(3))/(27(1)^(3)) + ((-12)(-25))/(6(1)^(2)) - (5)/(2(1)))^(2) + ((-25)/(3(1)) - (-(-25)^(2))/(9(1)^(2)))^(3)}} + \sqrt[3]{((-(-12)^(3))/(27(1)^(3))}} + ((-12)(-25))/(6(1)^(2)) - (5)/(2(1))) - \sqrt{((-(-12)^(3))/(27(1)^(3)) + ((-12)(-25))/(6(1)^(2)) - (5)/(2(1)))^(2) + ((-25)/(3(1)) - (-(-25)^(2))/(9(1)^(2)))^(3) - (-12)/(3(1))}}

x = \sqrt[3]{((-(-1728))/(27(1)) + (300)/(6(1)) - (5)/(2)) + \sqrt{((-(-1728))/(27(1)^(3)) + (300)/(6(1)) - (5)/(2))^(2) + ((-25)/(3(1)) - (144)/(9(1)))^(3)}}} + \sqrt[3]{((-(-1728))/(27(1)) + (300)/(6(1)) - (5)/(2)) - \sqrt{((-(-1728))/(27(1)^(3)) + (300)/(6(1)) - (5)/(2))^(2) + ((-25)/(3(1)) - (144)/(9(1)))^(3)}}} - (-12)/(3)

x = \sqrt[3]{((1728)/(27) + (300)/(6) - 2(1)/(2)) + \sqrt{((1728)/(27) + (300)/(6) - 2(1)/(2))^(2) + ((-25)/(3) - (144)/(9))^(3)}} + \sqrt[3]{((1728)/(27) + (300)/(6) - 2(1)/(2)) - \sqrt{((1728)/(27) + (300)/(6) - 2(1)/(2))^(2) + ((-25)/(3) - (144)/(9))^(3)}} - 4

x = \sqrt[3]{(64 + 50 - 2(1)/(2)) + \sqrt{(64 + 50 - 2(1)/(2))^(2) + (-8(1)/(3) - 16)^(3)}} + sqrt[3]{(64 + 50 - 2(1)/(2)) - \sqrt{(64 + 50 - 2(1)/(2))^(2) + (-8(1)/(3) - 16)^(3)}} - 4

x = \sqrt[3]{(114 - 2(1)/(2)) + \sqrt{(114 - 2(1)/(2))^(2) + (-24(1)/(3))^(3)}} + \sqrt[3]{(114 - 2(1)/(2)) - \sqrt{(114 - 2(1)/(2))^(2) + (-24(1)/(3))^(3)}} - 4

x = \sqrt[3]{(112(1)/(2)) + \sqrt{(112(1)/(2))^(2) - (24(1)/(3))^(3)}} - \sqrt[3]{(112(1)/(2)) + \sqrt{(112(1)/(2))^(2) - (24(1)/(3))^(3)}} - 4

x = \sqrt[3]{112(1)/(2) + √(12656.25 - 14408.037)} + \sqrt[3]{112(1)/(2) + √(12656.25 - 14408.037)} - 4

x = \sqrt[3]{112(1)/(2) + √(-1751.787)} + \sqrt[3]{112(1)/(2) - √(-1751.787)} - 4

x = \sqrt[3]{112(1)/(2) + 41.855i} + \sqrt[3]{112(1)/(2) - 41.855i} - 4

x = -4 + \sqrt[3]{112(1)/(2) + 41.855i} + \sqrt[3]{112(1)/(2) - 41.855i}
User Joshua Lowry
by
7.4k points
4 votes

Answer:

There are 3 roots of the given equation.

Explanation:

Given the equation


-12x^2-25x+5+x^3=0

we have to tell the number of roots of the given equation.

As the number of roots for an equation is equal to degree.

The degree of a polynomial is the highest power of its monomials with non-zero coefficients.

Hence, number of roots is the highest power in the equation.

Now, the equation is
-12x^2-25x+5+x^3=0

The highest power i.e degree of equation is 3.

hence, there are 3 roots of the given equation.

User Johnyb
by
6.9k points