54.2k views
4 votes
Help pls!!! With explanations

Help pls!!! With explanations-example-1

1 Answer

1 vote

(log_(2)(24))/(log_(96)(2)) - (log_(2)(192))/(log_(12)(2))

log₂(24):
2^(x) = 24

ln(2^(x)) = ln(24)

xln(2) = ln(24)

x = (ln(24))/(ln(2))

x = (ln(8 * 3))/(ln(2))

x = (ln(8) + ln(3))/(ln(2))

x = (3ln(2) + ln(3))/(ln(2))

x = (3ln(2))/(ln(2)) + (ln(3))/(ln(2))

x = 3 + 1.1

x = 4.1

log₉₆(2):
96^(x) = 2

ln(96^(x)) = ln(2)

xln(96) = ln(2)

xln(32 * 3) = ln(2)

x(ln(32) + ln(3)) = ln(2)

(x(ln(32) + ln(3)))/(ln(32) + ln(3)) = (ln(2))/(ln(32) + ln(3))

x = (ln(2))/(ln((2)^(5)) + ln(3))

x = (ln(2))/(5ln(2) + ln(3))

x = 0.7


(log_(2)(24))/(log_(96)(2)) = (3 + (ln(3))/(ln(2)))/((ln(2))/(5ln(2) + ln(3))) = (4.1)/(0.7) = 5(6)/(7)

log₂(192):
2^(x) = 192

ln(2^(x)) = ln(192)

xln(2) = ln(64 * 3)

xln(2) = ln(64) + ln(3)

xln(2) = ln((2)^(6)) + ln(3)

xln(2) = 6ln(2) + ln(3)

(xln(2))/(ln(2)) = (6ln(2) + ln(3))/(ln(2))

x = (6ln(2))/(ln(2)) + (ln(3))/(ln(2))

x = 6 + 1.1

x = 7.1

log₁₂(2):
12^(x) = 2

ln(12^(x)) = ln(2)

xln(12) = ln(2)

xln(4 * 3) = ln(2)

x(ln(4) + ln(3)) = ln(2)

(x(ln(4) + ln(3)))/(ln(4) + ln(3)) = (ln(2))/(ln(4) + ln(3))

x = (ln(2))/(ln((2)^(2)) + ln(3))

x = (ln(2))/(2ln(2) + ln(3))

x = 0.3


(log_(2)(192))/(log_(12)(2)) = (log_(2)(192))/(log_(12)(2)) = (7.1)/(0.3) = 23(2)/(3)


5(6)/(7) - 23(2)/(3)

-17(17)/(21)
User Lawliet
by
6.9k points