18.7k views
3 votes
Convert,the complex number into polar form: 4+4i

User Retrovius
by
7.9k points

1 Answer

4 votes
z = a + bi
z = 4 + 4i

r² = a² + b²
r² = (4)² + (4)²
r² = 16 + 16
r² = 32
r = 4√(2)
r = 4(1.414)
r = 5.656


cos\theta = (a)/(r)

cos\theta = (4)/(4√(2))

cos\theta = (4)/(4√(2)) * (√(2))/(√(2))

cos\theta = (4√(2))/(4√(4))

cos\theta = (4√(2))/(4(2))

cos\theta = (4√(2))/(8)

cos\theta = (√(2))/(2)

2(cos\theta) = 2((√(2))/(2))

2cos\theta = √(2)

2cos\theta = 1.414


sin\theta = (b)/(r)

sin\theta = (4)/(4√(2))

sin\theta = (4)/(4√(2)) * (√(2))/(√(2))

sin\theta = (4√(2))/(4√(4))

sin\theta = (4√(2))/(4(2))

sin\theta = (4√(2))/(8)

sin\theta = (√(2))/(2)

2(sin\theta) = 2((√(2))/(2))

2sin\theta = √(2)

2sin\theta = 1.414

z = a + bi
z = rcosθ + (rsinθ)i
z = r(cosθ + i sinθ)

z = 4 + 4i
z = 5.656cosθ + (5.656sinθ)i
z = 5.656(cosθ + i sinθ)
z = 5.656(cos45 + i sin45)


\theta = tan^(-1)(b)/(a)

\theta = tan^(-1)(4)/(4)

\theta = tan^(-1)(1)

\theta = 45

The polar form of 4 + 4i is approximately equal to 5.656(cos45 + i sin45).
User Jfpoilpret
by
8.3k points