55.0k views
3 votes
Find the horizontal or oblique asymptote of f(x) = negative 2 x squared plus 3 x plus 6, all over x plus 2 .

Possible answers:

y = −2x + 7
y = −2
y = 2
y = 2x − 1

User BeWu
by
8.5k points

2 Answers

2 votes

f(x) = (-2x^(2) + 3x + 6)/(x + 2)

-2x + 7
x + 2|-2x² + 3x + 6
-2x² - 4x
7x + 6
-7x + 14
14x - 8


f(x) = (-2x^(2) + 3x + 6)/(x + 2) = -(2x^(2) + 3x + 6)/(x + 2) = -2x + 7 + (14x - 8)/(x + 2)

y = -2x + 7

The answer is A.
User RaiBnod
by
8.4k points
3 votes

Answer: First option is correct.

Explanation:

Since we have given that


f(x)=(-2x^2+3x+6)/(x+2)

We need to find the horizontal or oblique asymptote .

Since the degree of numerator is more than the degree of denominator.

So, it has oblique asymptote.


\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-2x^2+3x+6\mathrm{\:and\:the\:divisor\:}x+2\mathrm{\::\:}(-2x^2)/(x)=-2x\\\\\mathrm{Quotient}=-2x\\\\\mathrm{Multiply\:}x+2\mathrm{\:by\:}-2x:\:-2x^2-4x\\\\\mathrm{Subtract\:}-2x^2-4x\mathrm{\:from\:}-2x^2+3x+6\mathrm{\:to\:get\:new\:remainder}\\\\\mathrm{Remainder}=7x+6\\\\\mathrm{Remainder}=7x+6\\\\=-2x+(7x+6)/(x+2)

And,


\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}7x+6\mathrm{\:and\:the\:divisor\:}x+2\mathrm{\::\:}\frac{7x}
{x}=7\\\\\mathrm{Quotient}=7\\\\\mathrm{Multiply\:}x+2\mathrm{\:by\:}7:\:7x+14\\\\\mathrm{Subtract\:}7x+14\mathrm{\:from\:}7x+6\mathrm{\:to\:get\:new\:remainder}\\\\\mathrm{Remainder}=-8\\\\Therefore,\\\\(7x+6)/(x+2)=7+(-8)/(x+2)

At last, we get,


-2x+7-(8)/(x+2)

Hence, the oblique asymptote of f(x) is

y=-2x+7

Therefore, First option is correct.


User Anneb
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories