Answer:
193.24g
Step-by-step explanation:
Step 1:
The balanced equation for the reaction. This is illustrated below:
Pb(NO3)2(aq) + 2NaBr(g) -> PbBr2(s) + 2NaNO3(aq)
Step 2:
Determination of the masses of Pb(NO3)2 and NaBr that reacted from the balanced equation. This is illustrated below:
Molar Mass of Pb(NO3)2 = 331.21g/mol
Molar Mass of NaBr = 102.9g/mol
Mass of NaBr from the balanced equation = 2 x 102.9 = 205.8g.
From the balanced equation,
Mass of Pb(NO3)2 that reacted = 331.21g
Mass of NaBr that reacted = 205.8g
Step 3:
Determination of the mass of NaBr that reacted with 311g of Pb(NO3)2. This is illustrated below:
From the balanced equation above,
331.21g of Pb(NO3)2 reacted with 205.8g of NaBr.
Therefore, 311g of Pb(NO3)2 will react with = (311x205.8)/331.21 = 193.24g of NaBr.
From the calculations made above, 193.24g of NaBr will react with 311g of Pb(NO3)2