40,029 views
42 votes
42 votes
(b) In the diagram below, ABC is an isos-celes triangle. /AB/=/AC/= 5 cm and/BC/= 8 cm. Calculate correct to thenearest degree, ZBAC.AB5 cm8 cmX 5 cmC

(b) In the diagram below, ABC is an isos-celes triangle. /AB/=/AC/= 5 cm and/BC/= 8 cm-example-1
(b) In the diagram below, ABC is an isos-celes triangle. /AB/=/AC/= 5 cm and/BC/= 8 cm-example-1
(b) In the diagram below, ABC is an isos-celes triangle. /AB/=/AC/= 5 cm and/BC/= 8 cm-example-2
User John Tor
by
2.7k points

1 Answer

13 votes
13 votes

Step 1

Given;

Step 2

From the triangle;

Using cosine rule;


c^2=a^2+b^2-2(a)(b)cos(C)


\begin{gathered} 8^2=5^2+5^2-2(5)(5)cos(y) \\ m\angle BAC=y \\ 64-50=-50(cos(y)) \\ \\ \end{gathered}
\begin{gathered} (14)/(-50)=cosy \\ y\approx106^o \end{gathered}

Answer;


m\angle BAC\approx106^o\text{ to the nearest degree}

(b) In the diagram below, ABC is an isos-celes triangle. /AB/=/AC/= 5 cm and/BC/= 8 cm-example-1
User Beau Simensen
by
3.0k points