528,838 views
20 votes
20 votes
Find b so that the vectors v=i−bj and w=9i−7j are orthogonal.

Find b so that the vectors v=i−bj and w=9i−7j are orthogonal.-example-1
User Tomasz Madeyski
by
2.7k points

1 Answer

19 votes
19 votes

Step-by-step explanation:

For those vectors to be orthogonal, v*w=0.

In this case:


\begin{bmatrix}{1} & {} \\ -{b} & {}\end{bmatrix}*\begin{bmatrix}{9} & {} \\ -{7} & {}\end{bmatrix}=1*9+-b*-7=0
\begin{gathered} 9+7b=0 \\ 7b=-9 \\ b=-(9)/(7) \\ \\ \end{gathered}

Lets check:

If b=-9/7, then v=i-(-9/7)j, and we have:


v=i+(9)/(7)j

And multiplying,


\begin{bmatrix}{1} & {} \\ {(9)/(7)} & {}\end{bmatrix}*\begin{bmatrix}{9} & {} \\ {-7} & {}\end{bmatrix}=1*9+\left(-7*(9)/(7)\right?=9+-9=0

v and w are orthogonals.

Answer:

b=-9/7

User Garris
by
3.0k points