161k views
5 votes
Convert the general form of the circle given into standard form.

2x^2 + 2y^2 - 20x - 8y + 50 = 0

2 Answers

3 votes




x^2-10x +25 +y^2-4y +4-4 =0 \\\\(x^2-10x +25) +(y^2-4y +4)=4 \\\\(x-5)^2+(y-2)^2=2^2


User Jose Haro Peralta
by
8.6k points
3 votes

The\ standard\ form\ of\ the\ circle:\\\\(x-a)^2+(y-b)^2=r^2\\\\where\\(a;\ b)\ are\ the\ coordinates\ of\ a\ center\ of\ the\ circle\\r\ is\ a\ radius\ of\ the\ circle\\------------------------


2x^2+2y^2-20x-8y+50=0\ \ \ \ |divide\ both\ sides\ by\ 2\\\\x^2+y^2-10x-4y+25=0\\\\x^2-10x+y^2-4y=-25\\\\x^2-2x\cdot5+y^2-2y\cdot2=-25\\\\\underbrace{x^2-2x\cdot5+5^2}_((*))-5^2+\underbrace{y^2-2y\cdot2+2^2}_((*))-2^2=-25\\(x-5)^2-25+(y-2)^2-4=-25\\\\(x-5)^2+(y-2)^2-29=-25\\\\(x-5)^2+(y-2)^2=-25+29


\boxed{(x-5)^2+(y-2)^2=4}\\\\the\ center:(5;\ 2)\\the\ radius:r=\sqrt4=2




(*)\ (a-b)^2=a^2-2ab+b^2
User Jerlam
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories