95,433 views
19 votes
19 votes
5. In this figure, triangle GHJ is similar to triangle PQR P Q 00 R G Based on this information, which ratio represents tan G? Sin G? Cos G?

User Ziarek
by
2.8k points

1 Answer

21 votes
21 votes

In the given problem,


\begin{gathered} \Delta GHJ\approx\Delta PQR \\ (GH)/(PQ)=(HJ)/(QR)=(GJ)/(PR) \\ \angle G=\angle P \\ \angle H=\angle Q \\ \angle J=\angle R \end{gathered}

Thus value of tanG, sinG and cosG can be determined as,


\begin{gathered} \tan G=\tan P=(QR)/(PR)=(15)/(8) \\ \sin G=\sin P=(QR)/(QP)=(15)/(17) \\ \cos G=\cos P=(PR)/(QP)=(8)/(17) \end{gathered}

Thus, the above expression gives the requried value of tanG, sinG and cosG.

User Renan
by
3.1k points