144k views
5 votes
Tan^2 A/1+cot^2 A + cot^2 A/1+tan^2 A=sec^2 A cosec^2 A-3

User KCGD
by
7.8k points

1 Answer

6 votes

(tan^2x)/(1+cot^2x)+(cot^2x)/(1+tan^2x)=sec^2x\ cosec^2x-3\\\\L=(tan^2x(1+tan^2x)+cot^2x(1+cot^2x))/((1+cot^2x)(1+tan^2x))=(tan^2x+tan^4x+cot^2x+cot^4x)/(1+tan^2x+cot^2x+tanxcotx)\\\\=(tan^2x+cot^2x+tan^4x+cot^4x)/(1+tan^2x+cot^2x+1)=(tan^2x+2+cot^2x+tan^4x-2+cot^4x)/(tan^2x+cot^2x+2)


=((tanx+cotx)^2+(tan^2x-cot^2x)^2)/((tanx+cotx)^2)=((tanx+cotx)^2)/((tanx+cotx)^2)+((tan^2x-cot^2x)^2)/((tanx+cotx)^2)\\\\=1+((tanx-cotx)^2(tanx+cotx)^2)/((tanx+cotx)^2)=1+(tanx-cotx)^2\\\\=1+tan^2x-2tanx\ cotx+cot^2x=tan^2x+cot^2x+1-2\\\\=\left((sinx)/(cosx)\right)^2+\left((cosx)/(sinx)\right)^2-1=(sin^2x)/(cos^2x)+(cos^2x)/(sin^2x)-1=(sin^4x+cos^4x)/(sin^2x\ cos^2x)-1


=((sin^2x)^2+2sin^2x\ cos^2x+(cos^2x)^2-2sin^2x\ cos^2x)/(sin^2x\ cos^2x)-1\\\\=((sin^2x+cos^2x)^2-2sin^2x\ cos^2x)/(sin^2x\ cos^2x)-1=(1^2-2sin^2x\ cos^2x)/(sin^2x\ cos^2x)-1\\\\=(1)/(sin^2x\ cos^2x)-(2sin^2x\ cos^2x)/(sin^2x\ cos^2x)-1=(1)/(sin^2x)\cdot(1)/(cos^2x)-2-1\\\\=cosec^2x\cdot sec^2x-3=sec^2x\ cosec^2x-3=R
User Chris Krycho
by
7.2k points

Related questions

asked Jan 22, 2024 165k views
Alexander Pranko asked Jan 22, 2024
by Alexander Pranko
8.7k points
1 answer
4 votes
165k views
1 answer
2 votes
146k views
1 answer
2 votes
39.7k views