176k views
2 votes
Ax+by=1
bx-ay=a+b
solve in linear equation in 2 variables

User Mixologic
by
8.6k points

2 Answers

3 votes
ax+by=1
bx-ay=a+b
The solution in attached file
Ax+by=1 bx-ay=a+b solve in linear equation in 2 variables-example-1
User Dubukay
by
8.1k points
5 votes

\left\{\begin{array}{ccc}ax+by=1&/\cdot a\\bx-ay=a+b&/\cdot b\end{array}\right\\\\+\left\{\begin{array}{ccc}a^2x+aby=a\\b^2x-aby=ab+b^2\end{array}\right\\------------\\.\ \ \ \ \ a^2x+b^2x=a+ab+b^2\\.\ \ \ \ \ \ (a^2+b^2)x=a+ab+b^2\\.\ \ \ \ \ \ \ \ \ \ \ \ x=(a+ab+b^2)/(a^2+b^2)\\\\a\cdot(a+ab+b^2)/(a^2+b^2)+by=1\\\\(a^2+a^2b+ab^2)/(a^2+b^2)+by=1\\\\by=1-(a^2+a^2b+ab^2)/(a^2+b^2)


by=(a^2+b^2)/(a^2+b^2)-(a^2+a^2b+ab^2)/(a^2+b^2)\\\\by=(a^2+b^2-a^2-a^2b-ab^2)/(a^2+b^2)\\\\by=(b^2-a^2b-ab^2)/(a^2+b^2)\\\\y=(b^2-a^2b-ab^2)/(a^2b+b^3)


y=(b(b-a^2-ab))/(b(a^2+b^2))\\\\y=(b-a^2-ab)/(a^2+b^2)\\\\Answer:\\\\x=(a+ab+b^2)/(a^2+b^2)\ and\ y=(b-a^2-ab)/(a^2+b^2)
User HamGuy
by
8.6k points